Vitamin D

Mean and error of plasma vitamin D levels (ng / mL)

We created this variable before df0$person<-1 “person” is a “variable” with constant value=1 I use “person” to calculate mean in total sample using svyby instead of svymean()

##   person  outcome        se     ci_l     ci_u DEff.outcome
## 1      1 20.07805 0.3682582 19.35628 20.79982     3.400738
##         Age  outcome        se     ci_l     ci_u DEff.outcome
## 17-24 17-24 19.73892 0.6817870 18.40264 21.07520     2.743411
## 25-44 25-44 20.35761 0.4729269 19.43069 21.28453     3.391753
## 45-64 45-64 19.48566 1.0369305 17.45331 21.51800     4.502440
##      Educational_level  outcome        se     ci_l     ci_u DEff.outcome
## Low                Low 22.68074 1.4281898 19.88154 25.47994     3.958762
## Mid                Mid 20.06069 0.4159796 19.24538 20.87599     3.032236
## High              High 19.60074 0.7852376 18.06170 21.13978     3.954881
##        Area  outcome        se     ci_l     ci_u DEff.outcome
## Urban Urban 19.54797 0.4054021 18.75339 20.34254     3.553852
## Rural Rural 24.17664 0.6420721 22.91820 25.43508     1.849969
##    Region  outcome        se     ci_l     ci_u DEff.outcome
## 1       1 24.40378 0.8147021 22.80699 26.00057     1.730523
## 2       2 25.37205 1.2324790 22.95643 27.78766     1.925028
## 3       3 22.83639 1.0505838 20.77729 24.89550     1.646154
## 4       4 20.79709 1.0187150 18.80044 22.79373     2.117744
## 5       5 20.66413 0.7316842 19.23005 22.09820     1.207798
## 6       6 19.31196 0.8232572 17.69840 20.92551     2.120491
## 7       7 19.90651 0.7710662 18.39525 21.41777     2.090395
## 8       8 19.81940 0.9279363 18.00067 21.63812     1.926247
## 9       9 21.36809 0.7864994 19.82657 22.90960     1.162401
## 10     10 20.42591 0.8132471 18.83198 22.01985     1.505404
## 11     11 18.70956 1.0826519 16.58760 20.83152     1.661806
## 12     12 19.38321 1.3444554 16.74812 22.01829     2.276117
## 13     13 19.00648 1.6084495 15.85398 22.15898     2.353027
## 14     14 13.82021 0.8113549 12.22998 15.41043     1.567422
## 15     15 12.81580 1.2536902 10.35861 15.27299     2.218003

Mean and error of plasma vitamin D levels (ng / mL)

Generar tabla de medias, se, n e IC95%

Mean and error of plasma vitamin D levels (ng / mL)

##   person  outcome        se     ci_l     ci_u DEff.outcome exposure    n
## 1      1 20.07805 0.3682582 19.35628 20.79982     3.400738      All 1583
## 2      1 22.68074 1.4281898 19.88154 25.47994     3.958762      Low  113
## 3      1 20.06069 0.4159796 19.24538 20.87599     3.032236      Mid  976
## 4      1 19.60074 0.7852376 18.06170 21.13978     3.954881     High  494
##   outcome_  exposure_
## 1     Mean       <NA>
## 2     Mean Educ level
## 3     Mean Educ level
## 4     Mean Educ level

Prevalence of vitamin D <30, <20 and <12

Prevalence of vitamin D <30

##   person  outcome1         se      ci_l      ci_u DEff.outcome1 exposure    n
## 1      1 0.8899959 0.01326272 0.8640014 0.9159903      2.843363      All 1583
## 2      1 0.8512115 0.07232704 0.7094531 0.9929699      4.627977      Low  113
## 3      1 0.8890693 0.01539621 0.8588932 0.9192453      2.344242      Mid  976
## 4      1 0.8993810 0.02483398 0.8507073 0.9480547      3.361003     High  494
##   outcome1_          exposure_      CI_i      CI_s
## 1      Mean               <NA> 0.8640009 0.9159908
## 2      Mean Educational levels 0.7094505 0.9929725
## 3      Mean Educational levels 0.8588927 0.9192458
## 4      Mean Educational levels 0.8507064 0.9480556

Prevalence of vitamin D <20

##   person  outcome2         se      ci_l      ci_u DEff.outcome2 exposure    n
## 1      1 0.5222102 0.02394133 0.4752860 0.5691343      3.635619      All 1583
## 2      1 0.3645948 0.07862445 0.2104938 0.5186959      2.989858      Low  113
## 3      1 0.5030312 0.03049085 0.4432702 0.5627922      3.627249      Mid  976
## 4      1 0.5899006 0.03967783 0.5121334 0.6676677      3.209430     High  494
##   outcome_          exposure_      CI_i      CI_s
## 1     Mean               <NA> 0.4752852 0.5691352
## 2     Mean Educational levels 0.2104909 0.5186988
## 3     Mean Educational levels 0.4432691 0.5627933
## 4     Mean Educational levels 0.5121320 0.6676691

Prevalence of vitamin D <12

##   person   outcome3         se       ci_l      ci_u DEff.outcome3 exposure    n
## 1      1 0.16007292 0.01613137 0.12845602 0.1916898      3.063000      All 1583
## 2      1 0.06202279 0.02318446 0.01658208 0.1074635      1.035254      Low  113
## 3      1 0.15350749 0.02081670 0.11270751 0.1943075      3.252621      Mid  976
## 4      1 0.19189542 0.03003225 0.13303330 0.2507575      2.868425     High  494
##   outcome_         exposure_       CI_i      CI_s
## 1     Mean              <NA> 0.12845544 0.1916904
## 2     Mean Educational level 0.01658125 0.1074643
## 3     Mean Educational level 0.11270676 0.1943082
## 4     Mean Educational level 0.13303222 0.2507586
##    person    outcome         se       ci_l      ci_u DEff.outcome exposure    n
## 1       1 0.88999586 0.01326272 0.86400141 0.9159903     2.843363      All 1583
## 2       1 0.85121154 0.07232704 0.70945314 0.9929699     4.627977      Low  113
## 3       1 0.88906925 0.01539621 0.85889324 0.9192453     2.344242      Mid  976
## 4       1 0.89938101 0.02483398 0.85070731 0.9480547     3.361003     High  494
## 5       1 0.52221016 0.02394133 0.47528602 0.5691343     3.635619      All 1583
## 6       1 0.36459484 0.07862445 0.21049376 0.5186959     2.989858      Low  113
## 7       1 0.50303119 0.03049085 0.44327022 0.5627922     3.627249      Mid  976
## 8       1 0.58990056 0.03967783 0.51213344 0.6676677     3.209430     High  494
## 9       1 0.16007292 0.01613137 0.12845602 0.1916898     3.063000      All 1583
## 10      1 0.06202279 0.02318446 0.01658208 0.1074635     1.035254      Low  113
## 11      1 0.15350749 0.02081670 0.11270751 0.1943075     3.252621      Mid  976
## 12      1 0.19189542 0.03003225 0.13303330 0.2507575     2.868425     High  494
##    outcome_          exposure_       CI_i      CI_s    type
## 1      Mean               <NA> 0.86400093 0.9159908 oucome1
## 2      Mean Educational levels 0.70945054 0.9929725 oucome1
## 3      Mean Educational levels 0.85889269 0.9192458 oucome1
## 4      Mean Educational levels 0.85070641 0.9480556 oucome1
## 5      Mean               <NA> 0.47528516 0.5691352 oucome2
## 6      Mean Educational levels 0.21049092 0.5186988 oucome2
## 7      Mean Educational levels 0.44326913 0.5627933 oucome2
## 8      Mean Educational levels 0.51213201 0.6676691 oucome2
## 9      Mean               <NA> 0.12845544 0.1916904 oucome3
## 10     Mean  Educational level 0.01658125 0.1074643 oucome3
## 11     Mean  Educational level 0.11270676 0.1943082 oucome3
## 12     Mean  Educational level 0.13303222 0.2507586 oucome3

Basic Plot

plot2<-ggplot(res0)+
  geom_point(aes(x=exposure, y=outcome, col=type))+
  geom_errorbar(aes(x=exposure, y=outcome,
                    ymin = CI_i, ymax = CI_s),
                 width = 0.1,size = 0.1, position = position_dodge(0.9))
plot2

You can change the labels, the scale into %, background color, etc.

plot2<-plot2 +
  facet_wrap(type~ . , scales = "free_y", nrow = 3)
plot2

# https://ggplot2.tidyverse.org/reference/labs.html
# https://www.r-graph-gallery.com/275-add-text-labels-with-ggplot2.html

Vitamin D Ranges

  • 0: Vit D >=30
  • 1: Vit D 20-29.9
  • 2: Vit D 12-19.9
  • 3: Vit D <12

Vitamin D Ranges

##        person exposure outcome5_0 outcome5_1 outcome5_2 outcome5_3
## 1.Low       1      Low   40896.22   133752.2   83165.41   17047.68
## 1.Mid       1      Mid  297973.16  1036944.1  938862.16  412339.35
## 1.High      1     High  140974.84   433605.6  557635.39  268860.05
##        se.outcome5_0 se.outcome5_1 se.outcome5_2 se.outcome5_3 ci_l.outcome5_0
## 1.Low       22076.61      30697.49      28029.96      5876.561       -2373.128
## 1.Mid       45819.89     107061.77      92261.07     59179.669      208167.819
## 1.High      37482.16      65943.28      65035.51     48851.604       67511.154
##        ci_l.outcome5_1 ci_l.outcome5_2 ci_l.outcome5_3 ci_u.outcome5_0
## 1.Low         73586.23        28227.71        5529.828        84165.57
## 1.Mid        827106.88       758033.79      296349.332       387778.49
## 1.High       304359.13       430168.13      173112.663       214438.54
##        ci_u.outcome5_1 ci_u.outcome5_2 ci_u.outcome5_3 DEff.outcome5_0
## 1.Low         193918.2        138103.1        28565.53        5.707246
## 1.Mid        1246781.3       1119690.5       528329.37        2.877615
## 1.High        562852.1        685102.7       364607.43        3.900339
##        DEff.outcome5_1 DEff.outcome5_2 DEff.outcome5_3
## 1.Low         5.594298        5.521860       0.8803831
## 1.Mid         6.537463        5.061053       3.6433794
## 1.High        5.112210        4.435029       3.8663595

Vitamin D Ranges

##        person exposure outcome5_0 outcome5_1 outcome5_2 outcome5_3
## 1.Low       1      Low  0.1487885  0.4866167  0.3025721 0.06202279
## 1.Mid       1      Mid  0.1109307  0.3860381  0.3495237 0.15350749
## 1.High      1     High  0.1006190  0.3094805  0.3980051 0.19189542
##        se.outcome5_0 se.outcome5_1 se.outcome5_2 se.outcome5_3 ci_l.outcome5_0
## 1.Low     0.07232704    0.08151790    0.07835190    0.02318446     0.007030071
## 1.Mid     0.01539621    0.02790336    0.02756623    0.02081670     0.080754731
## 1.High    0.02483398    0.03453090    0.03593478    0.03003225     0.051945294
##        ci_l.outcome5_1 ci_l.outcome5_2 ci_l.outcome5_3 ci_u.outcome5_0
## 1.Low        0.3268446       0.1490052      0.01658208       0.2905469
## 1.Mid        0.3313485       0.2954949      0.11270751       0.1411068
## 1.High       0.2418011       0.3275743      0.13303330       0.1492927
##        ci_u.outcome5_1 ci_u.outcome5_2 ci_u.outcome5_3 DEff.outcome5_0
## 1.Low        0.6463888       0.4561390       0.1074635        4.627977
## 1.Mid        0.4407276       0.4035525       0.1943075        2.344242
## 1.High       0.3771598       0.4684360       0.2507575        3.361003
##        DEff.outcome5_1 DEff.outcome5_2 DEff.outcome5_3
## 1.Low         2.980395        3.259624        1.035254
## 1.Mid         3.204083        3.259937        3.252621
## 1.High        2.751736        2.657961        2.868425

Vitamin D Ranges

Vitamin D Ranges

##    ci_l.outcome5_0 ci_l.outcome5_1 ci_l.outcome5_2 ci_l.outcome5_3
## 2      0.007030071       0.3268446       0.1490052      0.01658208
## 3      0.080754731       0.3313485       0.2954949      0.11270751
## 4      0.051945294       0.2418011       0.3275743      0.13303330
## 6      0.007030071       0.3268446       0.1490052      0.01658208
## 7      0.080754731       0.3313485       0.2954949      0.11270751
## 8      0.051945294       0.2418011       0.3275743      0.13303330
## 10     0.007030071       0.3268446       0.1490052      0.01658208
## 11     0.080754731       0.3313485       0.2954949      0.11270751
## 12     0.051945294       0.2418011       0.3275743      0.13303330
## 14     0.007030071       0.3268446       0.1490052      0.01658208
## 15     0.080754731       0.3313485       0.2954949      0.11270751
## 16     0.051945294       0.2418011       0.3275743      0.13303330
## 1      0.084009684       0.3244953       0.3191264      0.12845602
## 5      0.084009684       0.3244953       0.3191264      0.12845602
## 9      0.084009684       0.3244953       0.3191264      0.12845602
## 13     0.084009684       0.3244953       0.3191264      0.12845602
##    ci_u.outcome5_0 ci_u.outcome5_1 ci_u.outcome5_2 ci_u.outcome5_3
## 2        0.2905469       0.6463888       0.4561390       0.1074635
## 3        0.1411068       0.4407276       0.4035525       0.1943075
## 4        0.1492927       0.3771598       0.4684360       0.2507575
## 6        0.2905469       0.6463888       0.4561390       0.1074635
## 7        0.1411068       0.4407276       0.4035525       0.1943075
## 8        0.1492927       0.3771598       0.4684360       0.2507575
## 10       0.2905469       0.6463888       0.4561390       0.1074635
## 11       0.1411068       0.4407276       0.4035525       0.1943075
## 12       0.1492927       0.3771598       0.4684360       0.2507575
## 14       0.2905469       0.6463888       0.4561390       0.1074635
## 15       0.1411068       0.4407276       0.4035525       0.1943075
## 16       0.1492927       0.3771598       0.4684360       0.2507575
## 1        0.1359986       0.4110761       0.4051480       0.1916898
## 5        0.1359986       0.4110761       0.4051480       0.1916898
## 9        0.1359986       0.4110761       0.4051480       0.1916898
## 13       0.1359986       0.4110761       0.4051480       0.1916898
##    DEff.outcome5_0 DEff.outcome5_1 DEff.outcome5_2 DEff.outcome5_3 exposure
## 2         4.627977        2.980395        3.259624        1.035254      Low
## 3         2.344242        3.204083        3.259937        3.252621      Mid
## 4         3.361003        2.751736        2.657961        2.868425     High
## 6         4.627977        2.980395        3.259624        1.035254      Low
## 7         2.344242        3.204083        3.259937        3.252621      Mid
## 8         3.361003        2.751736        2.657961        2.868425     High
## 10        4.627977        2.980395        3.259624        1.035254      Low
## 11        2.344242        3.204083        3.259937        3.252621      Mid
## 12        3.361003        2.751736        2.657961        2.868425     High
## 14        4.627977        2.980395        3.259624        1.035254      Low
## 15        2.344242        3.204083        3.259937        3.252621      Mid
## 16        3.361003        2.751736        2.657961        2.868425     High
## 1         2.843363        3.320414        3.299307        3.063000      All
## 5         2.843363        3.320414        3.299307        3.063000      All
## 9         2.843363        3.320414        3.299307        3.063000      All
## 13        2.843363        3.320414        3.299307        3.063000      All
##       n         exposure_ time outcome5_       se       CI_i     CI_s
## 2   113 Educational level    1 14.878846 7.232704  0.7027466 29.05495
## 3   976 Educational level    1 11.093075 1.539621  8.0754177 14.11073
## 4   494 Educational level    1 10.061899 2.483398  5.1944400 14.92936
## 6   113 Educational level    2 48.661669 8.151790 32.6841614 64.63918
## 7   976 Educational level    2 38.603806 2.790336 33.1347487 44.07286
## 8   494 Educational level    2 30.948045 3.453090 24.1799878 37.71610
## 10  113 Educational level    3 30.257206 7.835190 14.9002342 45.61418
## 11  976 Educational level    3 34.952370 2.756623 29.5493881 40.35535
## 12  494 Educational level    3 39.800513 3.593478 32.7572964 46.84373
## 14  113 Educational level    4  6.202279 2.318446  1.6581250 10.74643
## 15  976 Educational level    4 15.350749 2.081670 11.2706763 19.43082
## 16  494 Educational level    4 19.189542 3.003225 13.3032218 25.07586
## 1  1583              <NA>    1 11.000414 1.326272  8.4009206 13.59991
## 5  1583              <NA>    2 36.778570 2.208735 32.4494491 41.10769
## 9  1583              <NA>    3 36.213724 2.194469 31.9125640 40.51488
## 13 1583              <NA>    4 16.007292 1.613137 12.8455443 19.16904

CROSSTAB

##         Area
## exposure   Urban   Rural
##     Low   215501   59360
##     Mid  2283632  402487
##     High 1363374   37702
## 
##  Pearson's X^2: Rao & Scott adjustment
## 
## data:  NextMethod()
## X-squared = 60.6, df = 2, p-value = 1.113e-10

Linear regression: svyglm gaussian

svyglm(outcome~ Area+Edad, survey_design, deff=TRUE)

Linear regression: svyglm gaussian: VitD & urbana/rural area ajusted by edad

Primero describo y luego modelo

##        Area  outcome        se     ci_l     ci_u DEff.outcome
## Urban Urban 19.54797 0.4054021 18.75339 20.34254     3.553852
## Rural Rural 24.17664 0.6420721 22.91820 25.43508     1.849969

Linear regression: svyglm gaussian: VitD & urbana/rural area ajusted by edad

## 
## Call:
## svyglm(formula = outcome ~ Area + Edad, design = survey_design, 
##     deff = TRUE)
## 
## Survey design:
## subset(survey_design, Edad < 50 & Sexo == 2)
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 19.75537    1.17661  16.790  < 2e-16 ***
## AreaRural    4.64072    0.76353   6.078 1.93e-09 ***
## Edad        -0.00660    0.03464  -0.191    0.849    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 60.97116)
## 
## Number of Fisher Scoring iterations: 2

Linear regression: svyglm gaussian: VitD & urbana/rural area ajusted by edad

Linear regression: svyglm gaussian: VitD & urbana/rural area ajusted by edad

##                 Estimate Std. Error    t value     Pr(>|t|)        name
## (Intercept) 19.755369485  1.1766104 16.7900686 4.764151e-54 (Intercept)
## AreaRural    4.640717720  0.7635330  6.0779531 1.925020e-09   AreaRural
## Edad        -0.006599543  0.0346403 -0.1905163 8.489554e-01        Edad
##                   outcome
## (Intercept) Vit D numeric
## AreaRural   Vit D numeric
## Edad        Vit D numeric

Logistic regression: svyglm logit

## Stratified 1 - level Cluster Sampling design (with replacement)
## With (792) clusters.
## subset(survey_design, Edad < 50 & Sexo == 2)
## Sampling variables:
##  - ids: Conglomerado_
##  - strata: strata_
##  - weights: fexp
## 
## Call:  svyglm(formula = outcome1 ~ Area + Edad, design = survey_design, 
##     family = quasibinomial(link = "logit"), deff = TRUE)
## 
## Coefficients:
## (Intercept)    AreaRural         Edad  
##    2.292585    -0.995504    -0.001389  
## 
## Degrees of Freedom: 1582 Total (i.e. Null);  760 Residual
## Null Deviance:       1097 
## Residual Deviance: 1075  AIC: NA

Logistic regression: svyglm logit

## 
## Call:
## svyglm(formula = outcome1 ~ Area + Edad, design = survey_design, 
##     family = quasibinomial(link = "logit"), deff = TRUE)
## 
## Survey design:
## subset(survey_design, Edad < 50 & Sexo == 2)
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  2.292585   0.438579   5.227 2.22e-07 ***
## AreaRural   -0.995504   0.257065  -3.873 0.000117 ***
## Edad        -0.001389   0.013088  -0.106 0.915522    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for quasibinomial family taken to be 1.000615)
## 
## Number of Fisher Scoring iterations: 4

Logistic regression: VitD<30 and urbana/rural area ajusted by age

Logistic regression: VitD<30 and urbana/rural area ajusted by age

##        Area  outcome1         se      ci_l      ci_u DEff.outcome1
## Urban Urban 0.9045523 0.01423007 0.8766618 0.9324427      3.127481
## Rural Rural 0.7774459 0.03355157 0.7116861 0.8432058      1.614315
##           outcome   OR OR_i OR_s pvalue
## AreaRural VitD<30 0.37 0.22 0.61 0.0001
## Edad      VitD<30 1.00 0.97 1.02 0.9155

Logistic regression: VitD<30 and urbana/rural area ajusted by age

## 
## Call:
## svyglm(formula = outcome1 ~ Area + Edad, design = survey_design, 
##     family = quasibinomial(link = "logit"), deff = TRUE)
## 
## Survey design:
## subset(survey_design, Edad < 50 & Sexo == 2)
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  2.292585   0.438579   5.227 2.22e-07 ***
## AreaRural   -0.995504   0.257065  -3.873 0.000117 ***
## Edad        -0.001389   0.013088  -0.106 0.915522    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for quasibinomial family taken to be 1.000615)
## 
## Number of Fisher Scoring iterations: 4

Several linear regressions

##         Estimate Std. Error     t value outcome pvalue                   model
## 1    0.001846841 0.03498990  0.05278213    VitD 0.9579                     Age
## 2   -0.006599543 0.03464030 -0.19051632    VitD 0.8490              Area + Age
## 3    4.640717720 0.76353299  6.07795313    VitD 0.0000              Area + Age
## 4   -0.013110634 0.03443705 -0.38071307    VitD 0.7035 Educational_level + Age
## 5   -2.736874939 1.47982640 -1.84945675    VitD 0.0648 Educational_level + Age
## 6   -3.196631405 1.63822151 -1.95128155    VitD 0.0514 Educational_level + Age
## 7    0.000475532 0.03495626  0.01360363    VitD 0.9891        Region_lbl + Age
## 8    0.969062990 1.47665700  0.65625463    VitD 0.5119        Region_lbl + Age
## 9   -1.567324274 1.32961034 -1.17878466    VitD 0.2389        Region_lbl + Age
## 10  -3.605663067 1.30844526 -2.75568507    VitD 0.0060        Region_lbl + Age
## 11  -3.738998074 1.09516817 -3.41408579    VitD 0.0007        Region_lbl + Age
## 12  -5.091752689 1.15872479 -4.39427268    VitD 0.0000        Region_lbl + Age
## 13  -4.496826579 1.12231413 -4.00674506    VitD 0.0001        Region_lbl + Age
## 14  -4.583892516 1.23595549 -3.70878446    VitD 0.0002        Region_lbl + Age
## 15  -3.036167852 1.13207223 -2.68195596    VitD 0.0075        Region_lbl + Age
## 16  -3.977583329 1.15071611 -3.45661567    VitD 0.0006        Region_lbl + Age
## 17  -5.693876307 1.35584148 -4.19951476    VitD 0.0000        Region_lbl + Age
## 18  -5.020303846 1.57247003 -3.19262290    VitD 0.0015        Region_lbl + Age
## 19  -5.397229515 1.80217502 -2.99484204    VitD 0.0028        Region_lbl + Age
## 20 -10.582607623 1.15299614 -9.17835477    VitD 0.0000        Region_lbl + Age
## 21 -11.587300633 1.49620478 -7.74446170    VitD 0.0000        Region_lbl + Age
## 22   0.006356137 0.03583516  0.17737152    VitD 0.8593            EN_lbl + Age
## 23   1.396059122 3.19649190  0.43674727    VitD 0.6624            EN_lbl + Age
## 24   0.358131602 0.99008325  0.36171867    VitD 0.7177            EN_lbl + Age
## 25   0.264082554 0.92190056  0.28645449    VitD 0.7746            EN_lbl + Age
## 26  -3.132028812 1.45701937 -2.14961371    VitD 0.0319            EN_lbl + Age
## 27   0.002889286 0.03530562  0.08183642    VitD 0.9348        Region num + Age
## 28  -0.356603267 0.09750369 -3.65733086    VitD 0.0003        Region num + Age
##    type                  exposure              exposure_lbl
## 1  VitD                      Edad                      Edad
## 2  VitD                      Edad                      Edad
## 3  VitD                 AreaRural                 AreaRural
## 4  VitD                      Edad                      Edad
## 5  VitD      Educational_levelMid      Educational_levelMid
## 6  VitD     Educational_levelHigh     Educational_levelHigh
## 7  VitD                      Edad                      Edad
## 8  VitD        Region_lblTarapacá        Region_lblTarapacá
## 9  VitD     Region_lblAntofagasta     Region_lblAntofagasta
## 10 VitD         Region_lblAtacama         Region_lblAtacama
## 11 VitD        Region_lblCoquimbo        Region_lblCoquimbo
## 12 VitD      Region_lblValparaíso      Region_lblValparaíso
## 13 VitD   Region_lblMetropolitana   Region_lblMetropolitana
## 14 VitD Region_lblL. B. O'Higgins Region_lblL. B. O'Higgins
## 15 VitD           Region_lblMaule           Region_lblMaule
## 16 VitD          Region_lblBiobío          Region_lblBiobío
## 17 VitD       Region_lblAraucanía       Region_lblAraucanía
## 18 VitD        Region_lblLos Ríos        Region_lblLos Ríos
## 19 VitD       Region_lblLos Lagos       Region_lblLos Lagos
## 20 VitD           Region_lblAysén           Region_lblAysén
## 21 VitD      Region_lblMagallanes      Region_lblMagallanes
## 22 VitD                      Edad                      Edad
## 23 VitD    EN_lblUnderweight (<.)    EN_lblUnderweight (<.)
## 24 VitD          EN_lblOverW (_.)          EN_lblOverW (_.)
## 25 VitD          EN_lblObese (_.)          EN_lblObese (_.)
## 26 VitD     EN_lblMorbid_obese(+)     EN_lblMorbid_obese(+)
## 27 VitD                      Edad                      Edad
## 28 VitD              Codigoregion              Codigoregion

Several linear regressions

##         Estimate Std. Error     t value outcome pvalue                   model
## 1    0.001846841 0.03498990  0.05278213    VitD 0.9579                     Age
## 2   -0.006599543 0.03464030 -0.19051632    VitD 0.8490              Area + Age
## 3    4.640717720 0.76353299  6.07795313    VitD 0.0000              Area + Age
## 4   -0.013110634 0.03443705 -0.38071307    VitD 0.7035 Educational_level + Age
## 5   -2.736874939 1.47982640 -1.84945675    VitD 0.0648 Educational_level + Age
## 6   -3.196631405 1.63822151 -1.95128155    VitD 0.0514 Educational_level + Age
## 7    0.000475532 0.03495626  0.01360363    VitD 0.9891        Region_lbl + Age
## 8    0.969062990 1.47665700  0.65625463    VitD 0.5119        Region_lbl + Age
## 9   -1.567324274 1.32961034 -1.17878466    VitD 0.2389        Region_lbl + Age
## 10  -3.605663067 1.30844526 -2.75568507    VitD 0.0060        Region_lbl + Age
## 11  -3.738998074 1.09516817 -3.41408579    VitD 0.0007        Region_lbl + Age
## 12  -5.091752689 1.15872479 -4.39427268    VitD 0.0000        Region_lbl + Age
## 13  -4.496826579 1.12231413 -4.00674506    VitD 0.0001        Region_lbl + Age
## 14  -4.583892516 1.23595549 -3.70878446    VitD 0.0002        Region_lbl + Age
## 15  -3.036167852 1.13207223 -2.68195596    VitD 0.0075        Region_lbl + Age
## 16  -3.977583329 1.15071611 -3.45661567    VitD 0.0006        Region_lbl + Age
## 17  -5.693876307 1.35584148 -4.19951476    VitD 0.0000        Region_lbl + Age
## 18  -5.020303846 1.57247003 -3.19262290    VitD 0.0015        Region_lbl + Age
## 19  -5.397229515 1.80217502 -2.99484204    VitD 0.0028        Region_lbl + Age
## 20 -10.582607623 1.15299614 -9.17835477    VitD 0.0000        Region_lbl + Age
## 21 -11.587300633 1.49620478 -7.74446170    VitD 0.0000        Region_lbl + Age
## 22   0.006356137 0.03583516  0.17737152    VitD 0.8593            EN_lbl + Age
## 23   1.396059122 3.19649190  0.43674727    VitD 0.6624            EN_lbl + Age
## 24   0.358131602 0.99008325  0.36171867    VitD 0.7177            EN_lbl + Age
## 25   0.264082554 0.92190056  0.28645449    VitD 0.7746            EN_lbl + Age
## 26  -3.132028812 1.45701937 -2.14961371    VitD 0.0319            EN_lbl + Age
## 27   0.002889286 0.03530562  0.08183642    VitD 0.9348        Region num + Age
## 28  -0.356603267 0.09750369 -3.65733086    VitD 0.0003        Region num + Age
##    type                  exposure              exposure_lbl
## 1  VitD                      Edad                      Edad
## 2  VitD                      Edad                      Edad
## 3  VitD                 AreaRural                 AreaRural
## 4  VitD                      Edad                      Edad
## 5  VitD      Educational_levelMid      Educational_levelMid
## 6  VitD     Educational_levelHigh     Educational_levelHigh
## 7  VitD                      Edad                      Edad
## 8  VitD        Region_lblTarapacá        Region_lblTarapacá
## 9  VitD     Region_lblAntofagasta     Region_lblAntofagasta
## 10 VitD         Region_lblAtacama         Region_lblAtacama
## 11 VitD        Region_lblCoquimbo        Region_lblCoquimbo
## 12 VitD      Region_lblValparaíso      Region_lblValparaíso
## 13 VitD   Region_lblMetropolitana   Region_lblMetropolitana
## 14 VitD Region_lblL. B. O'Higgins Region_lblL. B. O'Higgins
## 15 VitD           Region_lblMaule           Region_lblMaule
## 16 VitD          Region_lblBiobío          Region_lblBiobío
## 17 VitD       Region_lblAraucanía       Region_lblAraucanía
## 18 VitD        Region_lblLos Ríos        Region_lblLos Ríos
## 19 VitD       Region_lblLos Lagos       Region_lblLos Lagos
## 20 VitD           Region_lblAysén           Region_lblAysén
## 21 VitD      Region_lblMagallanes      Region_lblMagallanes
## 22 VitD                      Edad                      Edad
## 23 VitD    EN_lblUnderweight (<.)    EN_lblUnderweight (<.)
## 24 VitD          EN_lblOverW (_.)          EN_lblOverW (_.)
## 25 VitD          EN_lblObese (_.)          EN_lblObese (_.)
## 26 VitD     EN_lblMorbid_obese(+)     EN_lblMorbid_obese(+)
## 27 VitD                      Edad                      Edad
## 28 VitD              Codigoregion              Codigoregion

Several logistic regressions

##    outcome    OR OR_i  OR_s pvalue                   model    type CI_i  CI_s
## 1  VitD<30  1.00 0.97  1.02 0.7734                     Age VitD<30 0.97  1.02
## 2  VitD<20  1.00 0.98  1.02 0.9421                     Age VitD<20 0.98  1.02
## 3  VitD<12  0.99 0.96  1.01 0.3112                     Age VitD<12 0.96  1.01
## 4  VitD<30  0.37 0.22  0.61 0.0001              Area + Age VitD<30 0.22  0.61
## 5  VitD<30  1.00 0.97  1.02 0.9155              Area + Age VitD<30 0.97  1.02
## 6  VitD<20  0.28 0.17  0.46 0.0000              Area + Age VitD<20 0.17  0.46
## 7  VitD<20  1.00 0.99  1.02 0.8468              Area + Age VitD<20 0.99  1.02
## 8  VitD<12  0.29 0.11  0.73 0.0091              Area + Age VitD<12 0.11  0.73
## 9  VitD<12  0.99 0.96  1.01 0.3696              Area + Age VitD<12 0.96  1.01
## 10 VitD<30  1.00 0.98  1.02 0.8905 Educational_level + Age VitD<30 0.98  1.02
## 11 VitD<30  1.38 0.45  4.23 0.5722 Educational_level + Age VitD<30 0.45  4.23
## 12 VitD<30  1.54 0.46  5.18 0.4854 Educational_level + Age VitD<30 0.46  5.18
## 13 VitD<20  1.00 0.99  1.02 0.7164 Educational_level + Age VitD<20 0.99  1.02
## 14 VitD<20  1.81 0.89  3.71 0.1036 Educational_level + Age VitD<20 0.89  3.71
## 15 VitD<20  2.58 1.22  5.43 0.0130 Educational_level + Age VitD<20 1.22  5.43
## 16 VitD<12  0.99 0.96  1.02 0.4769 Educational_level + Age VitD<12 0.96  1.02
## 17 VitD<12  2.51 1.08  5.83 0.0326 Educational_level + Age VitD<12 1.08  5.83
## 18 VitD<12  3.29 1.32  8.19 0.0106 Educational_level + Age VitD<12 1.32  8.19
## 19 VitD<30  1.00 0.97  1.02 0.7734        Region_lbl + Age VitD<30 0.97  1.02
## 20 VitD<30  0.48 0.20  1.12 0.0894        Region_lbl + Age VitD<30 0.20  1.12
## 21 VitD<30  0.91 0.32  2.60 0.8666        Region_lbl + Age VitD<30 0.32  2.60
## 22 VitD<30  1.33 0.35  5.13 0.6760        Region_lbl + Age VitD<30 0.35  5.13
## 23 VitD<30  2.22 0.84  5.85 0.1083        Region_lbl + Age VitD<30 0.84  5.85
## 24 VitD<30  1.89 0.76  4.73 0.1741        Region_lbl + Age VitD<30 0.76  4.73
## 25 VitD<30  1.27 0.55  2.93 0.5802        Region_lbl + Age VitD<30 0.55  2.93
## 26 VitD<30  3.92 1.20 12.74 0.0236        Region_lbl + Age VitD<30 1.20 12.74
## 27 VitD<30  1.49 0.37  6.06 0.5753        Region_lbl + Age VitD<30 0.37  6.06
## 28 VitD<30  0.97 0.45  2.13 0.9485        Region_lbl + Age VitD<30 0.45  2.13
## 29 VitD<30  1.06 0.39  2.91 0.9101        Region_lbl + Age VitD<30 0.39  2.91
## 30 VitD<30  0.95 0.26  3.55 0.9450        Region_lbl + Age VitD<30 0.26  3.55
## 31 VitD<30  1.00 0.28  3.55 0.9981        Region_lbl + Age VitD<30 0.28  3.55
## 32 VitD<30  7.64 1.73 33.71 0.0074        Region_lbl + Age VitD<30 1.73 33.71
## 33 VitD<30  7.54 0.91 62.72 0.0619        Region_lbl + Age VitD<30 0.91 62.72
## 34 VitD<20  1.00 0.98  1.02 0.9810        Region_lbl + Age VitD<20 0.98  1.02
## 35 VitD<20  1.82 0.88  3.75 0.1043        Region_lbl + Age VitD<20 0.88  3.75
## 36 VitD<20  2.04 0.94  4.43 0.0729        Region_lbl + Age VitD<20 0.94  4.43
## 37 VitD<20  3.58 1.67  7.64 0.0010        Region_lbl + Age VitD<20 1.67  7.64
## 38 VitD<20  2.23 1.02  4.90 0.0460        Region_lbl + Age VitD<20 1.02  4.90
## 39 VitD<20  3.92 1.97  7.80 0.0001        Region_lbl + Age VitD<20 1.97  7.80
## 40 VitD<20  4.76 2.51  9.03 0.0000        Region_lbl + Age VitD<20 2.51  9.03
## 41 VitD<20  3.02 1.06  8.63 0.0391        Region_lbl + Age VitD<20 1.06  8.63
## 42 VitD<20  3.09 1.58  6.04 0.0010        Region_lbl + Age VitD<20 1.58  6.04
## 43 VitD<20  4.19 2.19  8.02 0.0000        Region_lbl + Age VitD<20 2.19  8.02
## 44 VitD<20  4.31 2.08  8.90 0.0001        Region_lbl + Age VitD<20 2.08  8.90
## 45 VitD<20  5.16 2.28 11.69 0.0001        Region_lbl + Age VitD<20 2.28 11.69
## 46 VitD<20  5.36 2.37 12.08 0.0001        Region_lbl + Age VitD<20 2.37 12.08
## 47 VitD<20 24.00 9.41 61.21 0.0000        Region_lbl + Age VitD<20 9.41 61.21
## 48 VitD<20 17.86 5.62 56.73 0.0000        Region_lbl + Age VitD<20 5.62 56.73
## 49 VitD<12  0.99 0.96  1.01 0.3268        Region_lbl + Age VitD<12 0.96  1.01
## 50 VitD<12  0.73 0.14  3.68 0.7026        Region_lbl + Age VitD<12 0.14  3.68
## 51 VitD<12  0.83 0.17  3.96 0.8101        Region_lbl + Age VitD<12 0.17  3.96
## 52 VitD<12  1.43 0.31  6.59 0.6500        Region_lbl + Age VitD<12 0.31  6.59
## 53 VitD<12  1.55 0.39  6.09 0.5311        Region_lbl + Age VitD<12 0.39  6.09
## 54 VitD<12  3.68 1.00 13.46 0.0496        Region_lbl + Age VitD<12 1.00 13.46
## 55 VitD<12  2.95 0.92  9.48 0.0696        Region_lbl + Age VitD<12 0.92  9.48
## 56 VitD<12  2.59 0.63 10.61 0.1850        Region_lbl + Age VitD<12 0.63 10.61
## 57 VitD<12  1.18 0.26  5.50 0.8286        Region_lbl + Age VitD<12 0.26  5.50
## 58 VitD<12  2.90 0.87  9.72 0.0843        Region_lbl + Age VitD<12 0.87  9.72
## 59 VitD<12  7.32 2.28 23.55 0.0009        Region_lbl + Age VitD<12 2.28 23.55
## 60 VitD<12  3.98 1.06 14.97 0.0415        Region_lbl + Age VitD<12 1.06 14.97
## 61 VitD<12  4.57 1.29 16.16 0.0188        Region_lbl + Age VitD<12 1.29 16.16
## 62 VitD<12 14.97 4.44 50.47 0.0000        Region_lbl + Age VitD<12 4.44 50.47
## 63 VitD<12 23.64 6.65 84.04 0.0000        Region_lbl + Age VitD<12 6.65 84.04
## 64 VitD<30  1.00 0.97  1.02 0.7731        Region num + Age VitD<30 0.97  1.02
## 65 VitD<30  1.00 0.93  1.08 0.9460        Region num + Age VitD<30 0.93  1.08
## 66 VitD<20  1.00 0.98  1.02 0.9187        Region num + Age VitD<20 0.98  1.02
## 67 VitD<20  1.09 1.04  1.14 0.0005        Region num + Age VitD<20 1.04  1.14
## 68 VitD<12  0.99 0.96  1.01 0.3033        Region num + Age VitD<12 0.96  1.01
## 69 VitD<12  1.15 1.08  1.23 0.0000        Region num + Age VitD<12 1.08  1.23
## 70 VitD<30  0.99 0.97  1.02 0.5791            EN_lbl + Age VitD<30 0.97  1.02
## 71 VitD<30  0.27 0.05  1.53 0.1401            EN_lbl + Age VitD<30 0.05  1.53
## 72 VitD<30  1.00 0.49  2.04 0.9930            EN_lbl + Age VitD<30 0.49  2.04
## 73 VitD<30  0.99 0.52  1.89 0.9827            EN_lbl + Age VitD<30 0.52  1.89
## 74 VitD<30  2.52 0.65  9.81 0.1840            EN_lbl + Age VitD<30 0.65  9.81
## 75 VitD<20  1.00 0.98  1.01 0.5698            EN_lbl + Age VitD<20 0.98  1.01
## 76 VitD<20  1.03 0.20  5.28 0.9682            EN_lbl + Age VitD<20 0.20  5.28
## 77 VitD<20  1.20 0.77  1.89 0.4222            EN_lbl + Age VitD<20 0.77  1.89
## 78 VitD<20  1.31 0.85  2.03 0.2257            EN_lbl + Age VitD<20 0.85  2.03
## 79 VitD<20  1.52 0.64  3.61 0.3441            EN_lbl + Age VitD<20 0.64  3.61
## 80 VitD<12  0.99 0.96  1.02 0.3539            EN_lbl + Age VitD<12 0.96  1.02
## 81 VitD<12  0.10 0.01  0.89 0.0394            EN_lbl + Age VitD<12 0.01  0.89
## 82 VitD<12  0.77 0.40  1.47 0.4289            EN_lbl + Age VitD<12 0.40  1.47
## 83 VitD<12  0.64 0.32  1.27 0.2043            EN_lbl + Age VitD<12 0.32  1.27
## 84 VitD<12  3.01 1.10  8.23 0.0324            EN_lbl + Age VitD<12 1.10  8.23
##                     exposure              exposure_lbl
## 1                       Edad                      Edad
## 2                       Edad                      Edad
## 3                       Edad                      Edad
## 4                  AreaRural                 AreaRural
## 5                       Edad                      Edad
## 6                  AreaRural                 AreaRural
## 7                       Edad                      Edad
## 8                  AreaRural                 AreaRural
## 9                       Edad                      Edad
## 10                      Edad                      Edad
## 11      Educational_levelMid      Educational_levelMid
## 12     Educational_levelHigh     Educational_levelHigh
## 13                      Edad                      Edad
## 14      Educational_levelMid      Educational_levelMid
## 15     Educational_levelHigh     Educational_levelHigh
## 16                      Edad                      Edad
## 17      Educational_levelMid      Educational_levelMid
## 18     Educational_levelHigh     Educational_levelHigh
## 19                      Edad                      Edad
## 20        Region_lblTarapacá        Region_lblTarapacá
## 21     Region_lblAntofagasta     Region_lblAntofagasta
## 22         Region_lblAtacama         Region_lblAtacama
## 23        Region_lblCoquimbo        Region_lblCoquimbo
## 24      Region_lblValparaíso      Region_lblValparaíso
## 25   Region_lblMetropolitana   Region_lblMetropolitana
## 26 Region_lblL. B. O'Higgins Region_lblL. B. O'Higgins
## 27           Region_lblMaule           Region_lblMaule
## 28          Region_lblBiobío          Region_lblBiobío
## 29       Region_lblAraucanía       Region_lblAraucanía
## 30        Region_lblLos Ríos        Region_lblLos Ríos
## 31       Region_lblLos Lagos       Region_lblLos Lagos
## 32           Region_lblAysén           Region_lblAysén
## 33      Region_lblMagallanes      Region_lblMagallanes
## 34                      Edad                      Edad
## 35        Region_lblTarapacá        Region_lblTarapacá
## 36     Region_lblAntofagasta     Region_lblAntofagasta
## 37         Region_lblAtacama         Region_lblAtacama
## 38        Region_lblCoquimbo        Region_lblCoquimbo
## 39      Region_lblValparaíso      Region_lblValparaíso
## 40   Region_lblMetropolitana   Region_lblMetropolitana
## 41 Region_lblL. B. O'Higgins Region_lblL. B. O'Higgins
## 42           Region_lblMaule           Region_lblMaule
## 43          Region_lblBiobío          Region_lblBiobío
## 44       Region_lblAraucanía       Region_lblAraucanía
## 45        Region_lblLos Ríos        Region_lblLos Ríos
## 46       Region_lblLos Lagos       Region_lblLos Lagos
## 47           Region_lblAysén           Region_lblAysén
## 48      Region_lblMagallanes      Region_lblMagallanes
## 49                      Edad                      Edad
## 50        Region_lblTarapacá        Region_lblTarapacá
## 51     Region_lblAntofagasta     Region_lblAntofagasta
## 52         Region_lblAtacama         Region_lblAtacama
## 53        Region_lblCoquimbo        Region_lblCoquimbo
## 54      Region_lblValparaíso      Region_lblValparaíso
## 55   Region_lblMetropolitana   Region_lblMetropolitana
## 56 Region_lblL. B. O'Higgins Region_lblL. B. O'Higgins
## 57           Region_lblMaule           Region_lblMaule
## 58          Region_lblBiobío          Region_lblBiobío
## 59       Region_lblAraucanía       Region_lblAraucanía
## 60        Region_lblLos Ríos        Region_lblLos Ríos
## 61       Region_lblLos Lagos       Region_lblLos Lagos
## 62           Region_lblAysén           Region_lblAysén
## 63      Region_lblMagallanes      Region_lblMagallanes
## 64                      Edad                      Edad
## 65              Codigoregion              Codigoregion
## 66                      Edad                      Edad
## 67              Codigoregion              Codigoregion
## 68                      Edad                      Edad
## 69              Codigoregion              Codigoregion
## 70                      Edad                      Edad
## 71    EN_lblUnderweight (<.)    EN_lblUnderweight (<.)
## 72          EN_lblOverW (_.)          EN_lblOverW (_.)
## 73          EN_lblObese (_.)          EN_lblObese (_.)
## 74     EN_lblMorbid_obese(+)     EN_lblMorbid_obese(+)
## 75                      Edad                      Edad
## 76    EN_lblUnderweight (<.)    EN_lblUnderweight (<.)
## 77          EN_lblOverW (_.)          EN_lblOverW (_.)
## 78          EN_lblObese (_.)          EN_lblObese (_.)
## 79     EN_lblMorbid_obese(+)     EN_lblMorbid_obese(+)
## 80                      Edad                      Edad
## 81    EN_lblUnderweight (<.)    EN_lblUnderweight (<.)
## 82          EN_lblOverW (_.)          EN_lblOverW (_.)
## 83          EN_lblObese (_.)          EN_lblObese (_.)
## 84     EN_lblMorbid_obese(+)     EN_lblMorbid_obese(+)

Several logistic regressions

##    outcome    OR OR_i  OR_s pvalue                   model    type CI_i  CI_s
## 1  VitD<30  1.00 0.97  1.02 0.7734                     Age VitD<30 0.97  1.02
## 2  VitD<20  1.00 0.98  1.02 0.9421                     Age VitD<20 0.98  1.02
## 3  VitD<12  0.99 0.96  1.01 0.3112                     Age VitD<12 0.96  1.01
## 4  VitD<30  0.37 0.22  0.61 0.0001              Area + Age VitD<30 0.22  0.61
## 5  VitD<30  1.00 0.97  1.02 0.9155              Area + Age VitD<30 0.97  1.02
## 6  VitD<20  0.28 0.17  0.46 0.0000              Area + Age VitD<20 0.17  0.46
## 7  VitD<20  1.00 0.99  1.02 0.8468              Area + Age VitD<20 0.99  1.02
## 8  VitD<12  0.29 0.11  0.73 0.0091              Area + Age VitD<12 0.11  0.73
## 9  VitD<12  0.99 0.96  1.01 0.3696              Area + Age VitD<12 0.96  1.01
## 10 VitD<30  1.00 0.98  1.02 0.8905 Educational_level + Age VitD<30 0.98  1.02
## 11 VitD<30  1.38 0.45  4.23 0.5722 Educational_level + Age VitD<30 0.45  4.23
## 12 VitD<30  1.54 0.46  5.18 0.4854 Educational_level + Age VitD<30 0.46  5.18
## 13 VitD<20  1.00 0.99  1.02 0.7164 Educational_level + Age VitD<20 0.99  1.02
## 14 VitD<20  1.81 0.89  3.71 0.1036 Educational_level + Age VitD<20 0.89  3.71
## 15 VitD<20  2.58 1.22  5.43 0.0130 Educational_level + Age VitD<20 1.22  5.43
## 16 VitD<12  0.99 0.96  1.02 0.4769 Educational_level + Age VitD<12 0.96  1.02
## 17 VitD<12  2.51 1.08  5.83 0.0326 Educational_level + Age VitD<12 1.08  5.83
## 18 VitD<12  3.29 1.32  8.19 0.0106 Educational_level + Age VitD<12 1.32  8.19
## 19 VitD<30  1.00 0.97  1.02 0.7734        Region_lbl + Age VitD<30 0.97  1.02
## 20 VitD<30  0.48 0.20  1.12 0.0894        Region_lbl + Age VitD<30 0.20  1.12
## 21 VitD<30  0.91 0.32  2.60 0.8666        Region_lbl + Age VitD<30 0.32  2.60
## 22 VitD<30  1.33 0.35  5.13 0.6760        Region_lbl + Age VitD<30 0.35  5.13
## 23 VitD<30  2.22 0.84  5.85 0.1083        Region_lbl + Age VitD<30 0.84  5.85
## 24 VitD<30  1.89 0.76  4.73 0.1741        Region_lbl + Age VitD<30 0.76  4.73
## 25 VitD<30  1.27 0.55  2.93 0.5802        Region_lbl + Age VitD<30 0.55  2.93
## 26 VitD<30  3.92 1.20 12.74 0.0236        Region_lbl + Age VitD<30 1.20 12.74
## 27 VitD<30  1.49 0.37  6.06 0.5753        Region_lbl + Age VitD<30 0.37  6.06
## 28 VitD<30  0.97 0.45  2.13 0.9485        Region_lbl + Age VitD<30 0.45  2.13
## 29 VitD<30  1.06 0.39  2.91 0.9101        Region_lbl + Age VitD<30 0.39  2.91
## 30 VitD<30  0.95 0.26  3.55 0.9450        Region_lbl + Age VitD<30 0.26  3.55
## 31 VitD<30  1.00 0.28  3.55 0.9981        Region_lbl + Age VitD<30 0.28  3.55
## 32 VitD<30  7.64 1.73 33.71 0.0074        Region_lbl + Age VitD<30 1.73 33.71
## 33 VitD<30  7.54 0.91 62.72 0.0619        Region_lbl + Age VitD<30 0.91 62.72
## 34 VitD<20  1.00 0.98  1.02 0.9810        Region_lbl + Age VitD<20 0.98  1.02
## 35 VitD<20  1.82 0.88  3.75 0.1043        Region_lbl + Age VitD<20 0.88  3.75
## 36 VitD<20  2.04 0.94  4.43 0.0729        Region_lbl + Age VitD<20 0.94  4.43
## 37 VitD<20  3.58 1.67  7.64 0.0010        Region_lbl + Age VitD<20 1.67  7.64
## 38 VitD<20  2.23 1.02  4.90 0.0460        Region_lbl + Age VitD<20 1.02  4.90
## 39 VitD<20  3.92 1.97  7.80 0.0001        Region_lbl + Age VitD<20 1.97  7.80
## 40 VitD<20  4.76 2.51  9.03 0.0000        Region_lbl + Age VitD<20 2.51  9.03
## 41 VitD<20  3.02 1.06  8.63 0.0391        Region_lbl + Age VitD<20 1.06  8.63
## 42 VitD<20  3.09 1.58  6.04 0.0010        Region_lbl + Age VitD<20 1.58  6.04
## 43 VitD<20  4.19 2.19  8.02 0.0000        Region_lbl + Age VitD<20 2.19  8.02
## 44 VitD<20  4.31 2.08  8.90 0.0001        Region_lbl + Age VitD<20 2.08  8.90
## 45 VitD<20  5.16 2.28 11.69 0.0001        Region_lbl + Age VitD<20 2.28 11.69
## 46 VitD<20  5.36 2.37 12.08 0.0001        Region_lbl + Age VitD<20 2.37 12.08
## 47 VitD<20 24.00 9.41 61.21 0.0000        Region_lbl + Age VitD<20 9.41 61.21
## 48 VitD<20 17.86 5.62 56.73 0.0000        Region_lbl + Age VitD<20 5.62 56.73
## 49 VitD<12  0.99 0.96  1.01 0.3268        Region_lbl + Age VitD<12 0.96  1.01
## 50 VitD<12  0.73 0.14  3.68 0.7026        Region_lbl + Age VitD<12 0.14  3.68
## 51 VitD<12  0.83 0.17  3.96 0.8101        Region_lbl + Age VitD<12 0.17  3.96
## 52 VitD<12  1.43 0.31  6.59 0.6500        Region_lbl + Age VitD<12 0.31  6.59
## 53 VitD<12  1.55 0.39  6.09 0.5311        Region_lbl + Age VitD<12 0.39  6.09
## 54 VitD<12  3.68 1.00 13.46 0.0496        Region_lbl + Age VitD<12 1.00 13.46
## 55 VitD<12  2.95 0.92  9.48 0.0696        Region_lbl + Age VitD<12 0.92  9.48
## 56 VitD<12  2.59 0.63 10.61 0.1850        Region_lbl + Age VitD<12 0.63 10.61
## 57 VitD<12  1.18 0.26  5.50 0.8286        Region_lbl + Age VitD<12 0.26  5.50
## 58 VitD<12  2.90 0.87  9.72 0.0843        Region_lbl + Age VitD<12 0.87  9.72
## 59 VitD<12  7.32 2.28 23.55 0.0009        Region_lbl + Age VitD<12 2.28 23.55
## 60 VitD<12  3.98 1.06 14.97 0.0415        Region_lbl + Age VitD<12 1.06 14.97
## 61 VitD<12  4.57 1.29 16.16 0.0188        Region_lbl + Age VitD<12 1.29 16.16
## 62 VitD<12 14.97 4.44 50.47 0.0000        Region_lbl + Age VitD<12 4.44 50.47
## 63 VitD<12 23.64 6.65 84.04 0.0000        Region_lbl + Age VitD<12 6.65 84.04
## 64 VitD<30  1.00 0.97  1.02 0.7731        Region num + Age VitD<30 0.97  1.02
## 65 VitD<30  1.00 0.93  1.08 0.9460        Region num + Age VitD<30 0.93  1.08
## 66 VitD<20  1.00 0.98  1.02 0.9187        Region num + Age VitD<20 0.98  1.02
## 67 VitD<20  1.09 1.04  1.14 0.0005        Region num + Age VitD<20 1.04  1.14
## 68 VitD<12  0.99 0.96  1.01 0.3033        Region num + Age VitD<12 0.96  1.01
## 69 VitD<12  1.15 1.08  1.23 0.0000        Region num + Age VitD<12 1.08  1.23
## 70 VitD<30  0.99 0.97  1.02 0.5791            EN_lbl + Age VitD<30 0.97  1.02
## 71 VitD<30  0.27 0.05  1.53 0.1401            EN_lbl + Age VitD<30 0.05  1.53
## 72 VitD<30  1.00 0.49  2.04 0.9930            EN_lbl + Age VitD<30 0.49  2.04
## 73 VitD<30  0.99 0.52  1.89 0.9827            EN_lbl + Age VitD<30 0.52  1.89
## 74 VitD<30  2.52 0.65  9.81 0.1840            EN_lbl + Age VitD<30 0.65  9.81
## 75 VitD<20  1.00 0.98  1.01 0.5698            EN_lbl + Age VitD<20 0.98  1.01
## 76 VitD<20  1.03 0.20  5.28 0.9682            EN_lbl + Age VitD<20 0.20  5.28
## 77 VitD<20  1.20 0.77  1.89 0.4222            EN_lbl + Age VitD<20 0.77  1.89
## 78 VitD<20  1.31 0.85  2.03 0.2257            EN_lbl + Age VitD<20 0.85  2.03
## 79 VitD<20  1.52 0.64  3.61 0.3441            EN_lbl + Age VitD<20 0.64  3.61
## 80 VitD<12  0.99 0.96  1.02 0.3539            EN_lbl + Age VitD<12 0.96  1.02
## 81 VitD<12  0.10 0.01  0.89 0.0394            EN_lbl + Age VitD<12 0.01  0.89
## 82 VitD<12  0.77 0.40  1.47 0.4289            EN_lbl + Age VitD<12 0.40  1.47
## 83 VitD<12  0.64 0.32  1.27 0.2043            EN_lbl + Age VitD<12 0.32  1.27
## 84 VitD<12  3.01 1.10  8.23 0.0324            EN_lbl + Age VitD<12 1.10  8.23
##                     exposure              exposure_lbl
## 1                       Edad                      Edad
## 2                       Edad                      Edad
## 3                       Edad                      Edad
## 4                  AreaRural                 AreaRural
## 5                       Edad                      Edad
## 6                  AreaRural                 AreaRural
## 7                       Edad                      Edad
## 8                  AreaRural                 AreaRural
## 9                       Edad                      Edad
## 10                      Edad                      Edad
## 11      Educational_levelMid      Educational_levelMid
## 12     Educational_levelHigh     Educational_levelHigh
## 13                      Edad                      Edad
## 14      Educational_levelMid      Educational_levelMid
## 15     Educational_levelHigh     Educational_levelHigh
## 16                      Edad                      Edad
## 17      Educational_levelMid      Educational_levelMid
## 18     Educational_levelHigh     Educational_levelHigh
## 19                      Edad                      Edad
## 20        Region_lblTarapacá        Region_lblTarapacá
## 21     Region_lblAntofagasta     Region_lblAntofagasta
## 22         Region_lblAtacama         Region_lblAtacama
## 23        Region_lblCoquimbo        Region_lblCoquimbo
## 24      Region_lblValparaíso      Region_lblValparaíso
## 25   Region_lblMetropolitana   Region_lblMetropolitana
## 26 Region_lblL. B. O'Higgins Region_lblL. B. O'Higgins
## 27           Region_lblMaule           Region_lblMaule
## 28          Region_lblBiobío          Region_lblBiobío
## 29       Region_lblAraucanía       Region_lblAraucanía
## 30        Region_lblLos Ríos        Region_lblLos Ríos
## 31       Region_lblLos Lagos       Region_lblLos Lagos
## 32           Region_lblAysén           Region_lblAysén
## 33      Region_lblMagallanes      Region_lblMagallanes
## 34                      Edad                      Edad
## 35        Region_lblTarapacá        Region_lblTarapacá
## 36     Region_lblAntofagasta     Region_lblAntofagasta
## 37         Region_lblAtacama         Region_lblAtacama
## 38        Region_lblCoquimbo        Region_lblCoquimbo
## 39      Region_lblValparaíso      Region_lblValparaíso
## 40   Region_lblMetropolitana   Region_lblMetropolitana
## 41 Region_lblL. B. O'Higgins Region_lblL. B. O'Higgins
## 42           Region_lblMaule           Region_lblMaule
## 43          Region_lblBiobío          Region_lblBiobío
## 44       Region_lblAraucanía       Region_lblAraucanía
## 45        Region_lblLos Ríos        Region_lblLos Ríos
## 46       Region_lblLos Lagos       Region_lblLos Lagos
## 47           Region_lblAysén           Region_lblAysén
## 48      Region_lblMagallanes      Region_lblMagallanes
## 49                      Edad                      Edad
## 50        Region_lblTarapacá        Region_lblTarapacá
## 51     Region_lblAntofagasta     Region_lblAntofagasta
## 52         Region_lblAtacama         Region_lblAtacama
## 53        Region_lblCoquimbo        Region_lblCoquimbo
## 54      Region_lblValparaíso      Region_lblValparaíso
## 55   Region_lblMetropolitana   Region_lblMetropolitana
## 56 Region_lblL. B. O'Higgins Region_lblL. B. O'Higgins
## 57           Region_lblMaule           Region_lblMaule
## 58          Region_lblBiobío          Region_lblBiobío
## 59       Region_lblAraucanía       Region_lblAraucanía
## 60        Region_lblLos Ríos        Region_lblLos Ríos
## 61       Region_lblLos Lagos       Region_lblLos Lagos
## 62           Region_lblAysén           Region_lblAysén
## 63      Region_lblMagallanes      Region_lblMagallanes
## 64                      Edad                      Edad
## 65              Codigoregion              Codigoregion
## 66                      Edad                      Edad
## 67              Codigoregion              Codigoregion
## 68                      Edad                      Edad
## 69              Codigoregion              Codigoregion
## 70                      Edad                      Edad
## 71    EN_lblUnderweight (<.)    EN_lblUnderweight (<.)
## 72          EN_lblOverW (_.)          EN_lblOverW (_.)
## 73          EN_lblObese (_.)          EN_lblObese (_.)
## 74     EN_lblMorbid_obese(+)     EN_lblMorbid_obese(+)
## 75                      Edad                      Edad
## 76    EN_lblUnderweight (<.)    EN_lblUnderweight (<.)
## 77          EN_lblOverW (_.)          EN_lblOverW (_.)
## 78          EN_lblObese (_.)          EN_lblObese (_.)
## 79     EN_lblMorbid_obese(+)     EN_lblMorbid_obese(+)
## 80                      Edad                      Edad
## 81    EN_lblUnderweight (<.)    EN_lblUnderweight (<.)
## 82          EN_lblOverW (_.)          EN_lblOverW (_.)
## 83          EN_lblObese (_.)          EN_lblObese (_.)
## 84     EN_lblMorbid_obese(+)     EN_lblMorbid_obese(+)
##                       outcome   OR OR_i OR_s pvalue            model
## Educational_levelMid  VitD<12 2.74 1.19 6.31 0.0179 Region num + Age
## Educational_levelHigh VitD<12 3.59 1.51 8.52 0.0039 Region num + Age
##                       outcome   OR OR_i OR_s pvalue            model
## Educational_levelMid  VitD<12 2.51 1.08 5.83 0.0326 Region num + Age
## Educational_levelHigh VitD<12 3.29 1.32 8.19 0.0106 Region num + Age
## Edad                  VitD<12 0.99 0.96 1.02 0.4769 Region num + Age
##                           outcome   OR OR_i OR_s pvalue            model
## Educational_levelMid      VitD<12 2.33 1.01 5.33 0.0465 Region num + Age
## Educational_levelHigh     VitD<12 3.06 1.23 7.59 0.0164 Region num + Age
## Edad                      VitD<12 0.99 0.96 1.02 0.4324 Region num + Age
## EN_lblUnderweight (<18.5) VitD<12 0.11 0.01 0.95 0.0455 Region num + Age
## EN_lblOverW (25_29.9)     VitD<12 0.79 0.42 1.48 0.4565 Region num + Age
## EN_lblObese (30_39.9)     VitD<12 0.70 0.36 1.37 0.3033 Region num + Age
## EN_lblMorbid_obese(40+)   VitD<12 3.19 1.15 8.87 0.0263 Region num + Age
##                       outcome   OR OR_i OR_s pvalue            model
## Educational_levelMid  VitD<12 2.61 1.11 6.10 0.0276 Region num + Age
## Educational_levelHigh VitD<12 3.41 1.34 8.68 0.0102 Region num + Age
## Edad                  VitD<12 0.99 0.96 1.02 0.4049 Region num + Age
## factor(ta3)2          VitD<12 0.39 0.15 1.01 0.0529 Region num + Age
## factor(ta3)3          VitD<12 0.47 0.23 0.94 0.0321 Region num + Age
## factor(ta3)4          VitD<12 0.76 0.42 1.39 0.3786 Region num + Age
##                       outcome          OR      OR_i         OR_s pvalue
## Educational_levelMid  VitD<12        1.85      0.65         5.29 0.2483
## Educational_levelHigh VitD<12        2.26      0.74         6.86 0.1525
## Edad                  VitD<12        0.98      0.95         1.01 0.1602
## factor(m7p4)-4444     VitD<12    23076.30   1528.19    348462.40 0.0000
## factor(m7p4)0         VitD<12  3387694.74 273357.77  41983353.40 0.0000
## factor(m7p4)0.5       VitD<12  1776021.25 202180.44  15601170.08 0.0000
## factor(m7p4)1         VitD<12   961902.80 124582.52   7426860.39 0.0000
## factor(m7p4)1.5       VitD<12    60788.31   4656.43    793573.67 0.0000
## factor(m7p4)2         VitD<12   517415.99  65405.65   4093214.01 0.0000
## factor(m7p4)2.5       VitD<12    23762.18   1092.56    516806.09 0.0000
## factor(m7p4)3         VitD<12   881886.07 106760.10   7284772.24 0.0000
## factor(m7p4)3.5       VitD<12 19033388.41 558700.97 648414611.63 0.0000
## factor(m7p4)4         VitD<12  1160162.26 118208.06  11386502.98 0.0000
## factor(m7p4)4.5       VitD<12        0.78      0.05        12.68 0.8583
## factor(m7p4)5         VitD<12   168469.12  11741.92   2417138.72 0.0000
## factor(m7p4)6         VitD<12  1677682.52 104407.85  26957921.99 0.0000
## factor(m7p4)7         VitD<12    26100.88   1158.50    588049.64 0.0000
## factor(m7p4)8         VitD<12        0.43      0.04         4.61 0.4894
## factor(m7p4)9         VitD<12        0.67      0.04        11.50 0.7851
## factor(m7p4)10        VitD<12        0.37      0.04         3.68 0.3970
##                                  model
## Educational_levelMid  Region num + Age
## Educational_levelHigh Region num + Age
## Edad                  Region num + Age
## factor(m7p4)-4444     Region num + Age
## factor(m7p4)0         Region num + Age
## factor(m7p4)0.5       Region num + Age
## factor(m7p4)1         Region num + Age
## factor(m7p4)1.5       Region num + Age
## factor(m7p4)2         Region num + Age
## factor(m7p4)2.5       Region num + Age
## factor(m7p4)3         Region num + Age
## factor(m7p4)3.5       Region num + Age
## factor(m7p4)4         Region num + Age
## factor(m7p4)4.5       Region num + Age
## factor(m7p4)5         Region num + Age
## factor(m7p4)6         Region num + Age
## factor(m7p4)7         Region num + Age
## factor(m7p4)8         Region num + Age
## factor(m7p4)9         Region num + Age
## factor(m7p4)10        Region num + Age
##                       outcome   OR OR_i OR_s pvalue            model
## Educational_levelMid  VitD<12 1.99 0.69 5.71 0.2009 Region num + Age
## Educational_levelHigh VitD<12 2.30 0.75 7.08 0.1473 Region num + Age
## Edad                  VitD<12 0.98 0.95 1.01 0.2026 Region num + Age
## m7p4_valida           VitD<12 0.84 0.67 1.06 0.1409 Region num + Age
##                       outcome   OR OR_i OR_s pvalue            model
## Educational_levelMid  VitD<12 1.88 0.67 5.30 0.2347 Region num + Age
## Educational_levelHigh VitD<12 2.23 0.72 6.92 0.1665 Region num + Age
## Edad                  VitD<12 0.99 0.95 1.02 0.4504 Region num + Age
## m7p10b                VitD<12 1.00 0.87 1.15 0.9661 Region num + Age
## 
## Call:
## svyglm(formula = outcome3 ~ Educational_level, design = survey_design, 
##     family = quasibinomial(link = "logit"), deff = TRUE)
## 
## Survey design:
## subset(survey_design, Edad < 50 & Sexo == 2)
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            -2.7162     0.3985  -6.816 1.91e-11 ***
## Educational_levelMid    1.0089     0.4251   2.373  0.01788 *  
## Educational_levelHigh   1.2785     0.4411   2.899  0.00386 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for quasibinomial family taken to be 1.000632)
## 
## Number of Fisher Scoring iterations: 5
## 
## Call:
## svyglm(formula = outcome3 ~ Educational_level + Edad, design = survey_design, 
##     family = quasibinomial(link = "logit"), deff = TRUE)
## 
## Survey design:
## subset(survey_design, Edad < 50 & Sexo == 2)
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           -2.327532   0.674255  -3.452 0.000587 ***
## Educational_levelMid   0.920381   0.429801   2.141 0.032559 *  
## Educational_levelHigh  1.191802   0.464929   2.563 0.010557 *  
## Edad                  -0.009784   0.013748  -0.712 0.476881    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for quasibinomial family taken to be 0.9994508)
## 
## Number of Fisher Scoring iterations: 5
## Stratified 1 - level Cluster Sampling design (with replacement)
## With (792) clusters.
## subset(survey_design, Edad < 50 & Sexo == 2)
## Sampling variables:
##  - ids: Conglomerado_
##  - strata: strata_
##  - weights: fexp
## 
## Call:  svyglm(formula = outcome3 ~ Educational_level + Edad + EN_lbl, 
##     design = survey_design, family = quasibinomial(link = "logit"), 
##     deff = TRUE)
## 
## Coefficients:
##               (Intercept)       Educational_levelMid  
##                  -2.09051                    0.84388  
##     Educational_levelHigh                       Edad  
##                   1.11678                   -0.01159  
## EN_lblUnderweight (<18.5)      EN_lblOverW (25_29.9)  
##                  -2.19212                   -0.24172  
##     EN_lblObese (30_39.9)    EN_lblMorbid_obese(40+)  
##                  -0.35034                    1.16086  
## 
## Degrees of Freedom: 1581 Total (i.e. Null);  755 Residual
##   (1 observation deleted due to missingness)
## Null Deviance:       1392 
## Residual Deviance: 1342  AIC: NA
Previous
Next